If your lake could talk

Maggie Sh<mark>annon</mark> Maine Lakes S<mark>ociety</mark>

In fact, lakes did speak

Lake Succession

- Over tens of thousands of years erosion fills the lake basin with soil
- Phosphorus is a plentiful element that sticks to soil particles
- It's also a plant food
- This nutrient feeds plant growth and algal blooms

Every lake in a developing watershed has increasing phosphorus inputs whether apparent yet or not

Since erosion is a force of nature,

and water runs downhill,

and lakes fill the low places,

> what happens on land ends up in the lake.

Development increases phosphorus loading 8 to 10 times over natural conditions (MEDEP)

And then, we know ...

- Northern New England is getting 71% more intense storms than we did 35 years ago This is expected to increase (CCI, UMO)
- Ice cover is on average 3 to 4 weeks less now than in 1800 and that means there's a longer growing season in lakes
- Summers are getting longer and warmer

53 + 490 = 22% of Maine's great ponds are "at risk from development" (MEDEP)

When Undisturbed, Lakes Remain Clear for Tens of Thousands of Years

Lakes Are living Systems. They react to their environment

As we build communities, we

- Clear vegetation
- Flatten land for homes, schools, farms, hospitals, shopping centers and the roads that connect them

This changes how stormwater acts

- More hard surfaces decrease the land's ability to absorb water
- Less rain soaks in, more of it runs off
- The runoff travels faster
- The faster it travels, the more material it carries

Nature's Filter

A mixed stand of sturdy vegetation

Runoff Enriches Lake Waters Creating a Cascade of Effects

HYPOLIMNION

EPILIMNION

Inflow

Cold, High Nutrients, No Oxygen at Depth Fish Die, Sediments Release Phosphorus

D. Whitney King, Colby College

Outflow

oxygen

Great Pond in Belgrade 2017

- Area of anoxia is thirty five times larger than it was 1989
- This engine of
 enrichment will
 keep on pumping
 phosphorus into
 the water column
 every summer

Death by a Thousand Cuts

The unintended outcome of many small insults by well-meaning people - *Nonpoint Source Pollution* - is the leading reason lakes bloom and lose value

20 Minute Storm in 2017

(each soil particle carries phosphorus)

Nonpoint Source Pollution

OF ALL THE BMP's, BUFFERS ARE THE MOST SIGNIFICANT

The shorelands are our last chance to stop pollution, fish kills, malodors, unsafe water, home market value loss and habitat destruction

Stormwater Management Changes runoff into groundwater

Soak rain into the ground, and hold soil in place

Buffer Services

Slow runoff so it will soak in, create the duff layer, cover soil and anchor it in place, absorb nutrients, filter groundwater, shade and cool land and water, provide shelter and food for wildlife.

The Ideal Buffer Has 5 Layers of Protection

3 Tiers, 10 Feet Deep is the Minimum Standard for LakeSmart

4 tiers visible here

Highly Civilized Buffer

Buffers Mimic Mother Nature

Taylor-made

Almost One Tier, Shrubs too Sparse, Grass Doesn't Count

Unstable Shore

Stabilize and Infiltrate, both

Stabilize and Save

Driveway Buffer

Unprotected Path

Before and After - (Both Stormwater and Humans Take the Shortest Path to the Lake)

Buffer not Compromised by Water Access (Access always cuts through the buffer, so precautions should be taken to stop runoff)

Safe access

No leaks

Strong protection

Another approach

Water Access OK, Protected

Infiltration Patio

Duff, Mid-Story, Canopy = 3

Before and After - Riprap

Identify the layers here . . .

Do you see duff? Mid-story trees?

How Many Layers Here?

Slam Dunk Buffer

Connectivity

Buffer Services

Additional Factors that Impact Shoreland Effectiveness:

·Density and Composition of Shoreland Trees and Shrubs

Slope

·Land Use above the Shoreland Area

The way life should be

